Nitric oxide synthesis-promoting effects of valsartan in human umbilical vein endothelial cells via the Akt/adenosine monophosphate-activated protein kinase/endothelial nitric oxide synthase pathway.
نویسندگان
چکیده
Valsartan (VAL), an antagonist of angiotensin II receptor type 1, has antihypertensive and multiple cardiovascular protective effects. The pleiotropic functions of VAL are related to the increased synthesis and biological activity of intravascular nitric oxide (NO). In this study, the role and mechanisms of VAL in the synthesis of NO were examined in human umbilical vein endothelial cells (HUVECs). Ten µmol/L of VAL was used to treat EA.hy926 cells for 30 minutes, 1, 3, 6, 12, and 24 hours, and three concentrations of VAL (i.e., 10, 1, and 0.1 µmol/L) were used to treat EA.hy926 cells for 24 hours. The cells were divided into five groups: control, VAL, VAL + Compound C (adenosine monophosphate-activated protein kinase [AMPK] inhibitor, 1 µmol/L), VAL + LY294002 (Akt [protein kinase B] inhibitor, 10 µmol/L), and VAL + L-nitro-arginine methyl ester (L-NAME, endothelial NO synthase [eNOS] inhibitor, 500 µmol/L) groups. The NO content in the VAL-treated HUVEC line (EA.hy926) was detected using the nitrate reductase method, and western blot was used to detect the phosphorylation of Akt, AMPK, and eNOS, as well as the changes in total protein levels. VAL increased NO synthesis in EA.hy926 cells in time- and dose-dependent manners (p < 0.05) and the intracellular phosphorylation levels of Akt, AMPK, and eNOS at the corresponding time points. LY294002, Compound C, and L-NAME could inhibit the VAL-promoted NO synthesis. VAL activated Akt, AMPK, and eNOS, thus promoting NO synthesis and playing a protective role in endothelial cells. These results partially explained the mechanisms underlying the cardiovascular protective effects of VAL.
منابع مشابه
Telmisartan Activates Endothelial Nitric Oxide Synthase via Ser1177 Phosphorylation in Vascular Endothelial Cells
Because endothelial nitric oxide synthase (eNOS) has anti-inflammatory and anti-arteriosclerotic functions, it has been recognized as one of the key molecules essential for the homeostatic control of blood vessels other than relaxation of vascular tone. Here, we examined whether telmisartan modulates eNOS function through its pleiotropic effect. Administration of telmisartan to mice significant...
متن کاملEicosapentaenoic Acid Protects against Palmitic Acid-Induced Endothelial Dysfunction via Activation of the AMPK/eNOS Pathway
Recent studies have shown that free fatty acids are associated with chronic inflammation, which may be involved in vascular injury. The intake of eicosapentaenoic acid (EPA) can decrease cardiovascular disease risks, but the protective mechanisms of EPA on endothelial cells remain unclear. In this study, primary human umbilical vein endothelial cells (HUVECs) treated with palmitic acid (PA) wer...
متن کاملEXPRESSION OF INDUCIBLE NITRIC OXIDE SYNTHASE GENE (iNOS) STIMULATED BY HYDROGEN PEROXIDE IN HUMAN ENDOTHELIAL CELLS
Inducible nitric oxide synthase (iNOS) gene expresses a calcium calmudolin-independent enzyme which can catalyse NO production from L-arginine. The induction of iNOS activity has been demonstrated in a wide variety of cell types under stimulation with cytokines and lipopoly saccharide (LPS). Previous studies indicated that all nitric oxide synthases (NOS) activated in human umbilical vein endot...
متن کاملGeranylgeranylacetone, heat shock protein 90/AMP-activated protein kinase/endothelial nitric oxide synthase/nitric oxide pathway, and endothelial function in humans.
OBJECTIVE Geranylgeranylacetone (GGA) induces expression of heat shock protein 90 (Hsp90), an adaptor molecule for assembly of endothelial nitric oxide synthase (eNOS) phosphorylation complex. The purpose of this study was to determine whether GGA enhances Hsp90 expression and augments endothelium-dependent vasodilation via upregulation of eNOS in humans. METHODS AND RESULTS We evaluated the ...
متن کاملOrotic acid induces hypertension associated with impaired endothelial nitric oxide synthesis.
Orotic acid (OA) is an intermediate of pyrimidine nucleotide biosynthesis. Hereditary deficiencies in some enzymes associated with pyrimidine synthesis or the urea cycle induce OA accumulation, resulting in orotic aciduria. A link between patients with orotic aciduria and hypertension has been reported; however, the molecular mechanisms remain elusive. In this study, to elucidate the role of OA...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Bosnian journal of basic medical sciences
دوره 17 2 شماره
صفحات -
تاریخ انتشار 2017